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a  b  s  t  r  a  c  t

In  this  paper  a new  multiobjective  modified  honey  bee  mating  optimization  (MHBMO)  algorithm  is
presented  to  investigate  the  distribution  feeder  reconfiguration  (DFR)  problem  considering  renewable
energy  sources  (RESs)  (photovoltaics,  fuel  cell  and  wind  energy)  connected  to  the  distribution  network.
The  objective  functions  of  the  problem  to  be  minimized  are  the  electrical  active  power  losses,  the voltage
deviations,  the  total  electrical  energy  costs  and  the  total  emissions  of  RESs  and  substations.  During  the
optimization  process,  the  proposed  algorithm  finds  a  set  of non-dominated  (Pareto)  optimal  solutions
which  are  stored  in an  external  memory  called  repository.  Since  the  objective  functions  investigated  are
MHBMO)
istribution feeder reconfiguration (DFR)
ultiobjective optimization

uel cell
ind energy

hotovoltaic (PV)

not the  same,  a  fuzzy  clustering  algorithm  is  utilized  to handle  the  size  of  the repository  in the  specified
limits.  Moreover,  a fuzzy-based  decision  maker  is  adopted  to  select  the  ‘best’  compromised  solution
among  the  non-dominated  optimal  solutions  of  multiobjective  optimization  problem.  In order  to  see  the
feasibility  and  effectiveness  of  the  proposed  algorithm,  two standard  distribution  test  systems  are  used
as  case  studies.

© 2011 Elsevier B.V. All rights reserved.

enewable energy sources (RESs)

. Introduction

The application of the RESs such as wind, fuel cell and photo-
oltaic in the new competitive electric power markets has gained
ignificant attention due to the economic and environmental con-
erns of fossils and nuclear fuel-based electricity energy as well as
eduction of fossil resources [1].  Also, the existence of some impor-
ant aspects as the quality of the RESs such as compatibility with
ther modular subsystem packages, fully automation possibility,
ow emission release, high efficiency and proper power quality and
eliability have made them even more popular than before [2].

In recent years, so many researchers have attended to investi-
ate the use of some kinds of renewable energies like wind energy,
iogas energy, fuel cells, photovoltaic cells, combined heat and

ower systems (CHP), etc., in the distribution voltage level [3–6].
evertheless, there are some significant considerations to get use
f the RESs appropriately and efficiently. Regions like offshore and

Abbreviations: MHBMO, modified honey bee mating optimization; DFR, distri-
ution feeder reconfiguration; PV, photovoltaic; FC, fuel cell; MOP, multiobjective
ptimization problem; MDFR, multiobjective DFR; RESs, renewable energy sources.
∗ Corresponding author at: Department of Electrical Engineering, Mahshahr
ranch, Islamic Azad University, Mahshahr, Iran. Tel.: +98 711 7264121;

ax:  +98 711 7353502.
E-mail addresses: niknam@sutech.ac.ir, taher nik@yahoo.com

T. Niknam), sdtabatabaei@gmail.com (S. Tabatabaei).

378-7753/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2011.05.081
high altitude areas that have more constant and stronger winds
are suitable to be used for the construction of wind farms. The
power stored in the airflows can be employed to rotate wind tur-
bines and so generate a clean and consistent electric power. Fuel
cell with a modular structure allows for simple construction and
operation with possible applications for distributed and portable
power generation [7].  Also as a result of their fast response, fuel cells
have a good quality to follow and supply the load changes while
maintaining the high efficiency at the same time [3–6]. Another
new technology in the field of renewable energy technologies is
photovoltaics (PV). PV is a method of generating electrical power
by converting solar radiation into direct current electricity using
semiconductors that exhibit the photovoltaic effect [8].  Like the
other kinds of renewable energies, PV has found many applica-
tions including satellites, electric vehicles, remote dwelling, boats,
on roofs, and by the use of DC–AC converters in the grids which are
connected to the power system. All these applications and many
other benefits that are not mentioned here make it critical to inves-
tigate the effect of the RESs on the distribution network especially
in the area of the DFR problem.

Electric distribution networks are generally designed and con-
structed as the radial networks so as to have suitable and proper

protection coordination. Nevertheless, the necessity of having a
secure network, supplying all consumers, minimizing power losses
and improving power quality, it is required to change the struc-
ture and the topology of the network using automatic or manual

dx.doi.org/10.1016/j.jpowsour.2011.05.081
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:niknam@sutech.ac.ir
mailto:taher_nik@yahoo.com
mailto:sdtabatabaei@gmail.com
dx.doi.org/10.1016/j.jpowsour.2011.05.081
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Nomenclature

X state variables vector
n number of state variables
NFC number of FC power sources
NPV number of PV power sources
NWind number of wind power sources
Nb number of branches
Ri resistance of ith branch (�)
Ii current of ith branch (A)
PFC,i active power production of the ith fuel cell power

source (kW)
PPV,i active power production of the ith PV power source

(kW)
PWind,i active power production of the ith wind power

source (KW)
Psub active power production of the substation (kW)
�i electrical efficiency of the ith FC
PLRi part load ratio of the ith FC
CFC,i cost of electrical energy generated by of the ith FC

power source ($)
CPV,i cost of electrical energy generated by of the ith PV

power source ($)
CWind,i cost of electrical energy generated by of the ith Wind

power source ($)
Csub cost of power generated at substation bus ($)
Price cost of power per unit generated at substation bus

($)
Gr annual rates of benefit
LF loading factor
EFC,i emission of the ith FC power source (lb)
EPV,i emission of the ith PV power source (lb)
EWind,i emission of the ith wind power source (lb)
EGrid emission of large scale sources (substation bus that

connects to grid) (lb)
NOxFC,i nitrogen oxide pollutants of the ith FC power source

(lb kWh−1)
SO2FC,i sulphur oxide pollutants of the ith FC power source

(lb kWh−1)
NOxPV,i nitrogen oxide pollutants of the ith PV power source

(lb kWh−1)
SO2PV,i sulphur oxide pollutants of the ith PV power source

(lb kWh−1)
NOxWind,i nitrogen oxide pollutants of the ith wind power

source (lb kWh−1)
SO2Wind,i sulphur oxide pollutants of the ith wind power

source (lb kWh−1)
NOxGrid nitrogen oxide pollutants of the grid (kg)
SO2Grid sulphur oxide pollutants of the grid (kg)
Pmin,FC,i minimum active power of the ith FC power source

(kW)
Pmax,FC,i maximum active power of the ith FC power source

(kW)
Pmin,PV,i minimum active power of the ith PV power source

(kW)
Pmax,PV,i maximum active power of the ith PV power source

(kW)
Pmin,Wind,i minimum active power of the ith wind power

source (kW)
Pmax,Wind,i maximum active power of the ith wind power

source (kW)
|PLine

ij
| absolute power flowing over distribution lines (kW)

PLine
ij,max maximum transmission power between the nodes i

and j (kW)

PLine
ij,min minimum transmission power between the nodes i

and j (kW)
Vmax maximum value of voltage magnitudes of ith bus (V)
Vmin minimum value of voltage magnitudes of ith bus (V)
fi(X) ith objective function
Ji(X) equality constraints of ith objective function
gi(X) inequality constraints of ith objective function
f min
i

lowest limit of ith objective function
f max
i

highest limit of ith objective function
Nf is the number of the objective functions in the MOP
�fi(X) membership function for ith objective function
D drone
Xqueen best particle among the entire population or the

queen
Xbrood,j the jth brood
Sp queen spermatheca matrix
NSp size of the queen spermatheca
�(f) absolute difference between the fitness of the drone

and the fitness of the queen
 ̨ speed reduction factor

� random value in the range of [0,1]
Prob(D) probability of adding the sperm of drone D to the

queen spermatheca
S(t) queen speed
Fi(X) values of the augmented fi(X)
Neq number of equality constraints of the DFR problem
Nueq number of inequality constraints of the DFR problem
L1 penalty factor
L2 penalty factor
Nipop number of the bees
Squeen queen speed
Smax maximum speed of the queen
Smin minimum speed of the queen
K1 value of the production of NOx (lbk Wh−1)
K2 values of the production of SOx (lbK Wh−1)
f queen
i

the value of the ith objective function for the queen
f drone
i

the value of the ith objective function for the drone
wi the weighting of the ith objective function
Mi the mean value of the drones’ population column-

wise
mi the mean value of the ith element of the control

vector in the drones’ population column-wise
rk random value in the range of [0,1]
TF a constant factor which decides the value of mean

to be changed. Can be 1or 2
Xq,k the kth new queen generated for implementing

modifying the breeding process
XD,m the mth new drone generated for implementing

modifying the breeding process
round the mathematic function which rounds each value

to the nearest integer
rand( ) the function for the generation of random value
Yk,m the new individual generated through modification

process
Z the new individual generated through modification
process

switches. However, the radial structure of the networks and dis-
crete nature of the switches is a main obstacle to get use of

the classical optimization methods in the multiobjective distribu-
tion feeder reconfiguration (MDFR) problem. Classical optimization
methods have suggested transforming the multiobjective opti-
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Table 1
Specifications of RESs (Test system 1).

Capacity (kW) Type Location

RES 1 464.375 FC 6
T. Niknam et al. / Journal of Po

ization problem to a single objective optimization problem [9,10].
owever, in these methods extensive computational resources

memories) are needed to find the multiple optima.
In the area of MDFR problem, Das [11] has presented a new mul-

iobjective approach based on the fuzzy set theory to solve the DFR
roblem. Vanderson Gomes et al. have suggested a new heuris-
ic method to change the configuration of the distribution systems
12]. Kim et al. [13] have suggested a new method based on neural
etwork in order to identify the configuration of the network cor-
esponding to different load levels. Taylor and Lubkeman [7] have
resented an expert system to reduce the search space by the use of
euristic rules. Kashem et al. [14] have introduced a new algorithm
ased on the distance measurement to find a loop in the network,
nd then a switching plan is used to enhance the load balancing in
he mentioned loop. Baran and Wu  [15] have used a mixed integer
rogramming (MIP) to solve the load balancing problem and power

oss reduction in the network. In order to supply the purpose of load
alancing and service restoration in two feeder networks, an algo-
ithm based on the network reconfiguration has been presented by
hou et al. [16]. Also, in [17,18] Niknam has proposed a method
ased on the evolutionary algorithms to convert multiobjective
FR problem to an equivalent augmented single objective prob-

em. Here again too extensive computational resources and many
uns are needed to find the solutions; therefore the efficiency of the
lgorithm will be reduced. Also, the new hybrid algorithm used by
iknam in [19] to solve the multiobjective DFR problem results in a

ingle solution which does not observe the Pareto optimality con-
ept. In fact it has the main disadvantage of ignoring many other
ood candidate solutions that can be supposed as optima.

In this paper a new modified honey bee mating evolutionary
lgorithm is utilized to solve MDFR problem while the effect of
ESs is considered. The traditional HBMO suffered from two  main
hortcomings: (I) dependency on the algorithm parameters, and (II)
he possibility of being trapped in local optima. Therefore, in this
aper a new modification process is proposed to enhance the per-
ormance of the algorithm. Also, during the optimization process,
he set of obtained non-dominated solutions, called Pareto-optimal
olutions, are stored in the repository. In order to control the size
f the repository, a fuzzy clustering technique is utilized.

. Multiobjective DFR considering RESs

.1. Objective functions

 Minimization of the power losses: Total power losses can be mini-
mized by the following equation:

f1(X) = Ploss(X) =
Nbr∑
i=1

Ri × ∣Ii∣2, X = [Tie, Sw, Pg ]

Tie = [Tie1, Tie2, Tie3, . . . , TieNtie ]; Sw = [Sw1, Sw2, Sw3, . . . , SwNsw ]
PFC = [PFC,1, PFC,2, . . . , PFC,NFC ]; PPV = [PPV,1, PPV,2, . . . , PPV,NPV ]
Pg = [PFC, PPV, PWind]
PWind = [PWind,1, PWind,2, . . . , PWind,NWind

(1)

where Tiei and Swi are the states of the ith tie switch and sec-
tionalizing switch which 0 and 1 are the values corresponding to
open and close states, respectively.

 Minimization of the voltage deviation of the buses: This objective
function can be defined as follows:

f2(X) = dev(X) = max[
∣∣1 − Vmin

∣∣ and
∣∣ 1 − Vmax

∣∣] (2)

Minimization of the total cost of generation:  The total cost is the
summation of the cost related to the power produced by the grid

and the cost related to the power produced by the RESs. The grid
cost can be evaluated as follows:

sub = price × Psub (3)
(

RES  2 464.375 FC 13
RES 3 464.375 PV 19
RES  4 464.375 Wind energy 22

The cost of FC power sources can be evaluated as follows [20]:

CFC,i = 0.04 $kWh−1 × PFC,i

�i

PLRi = Pg,i

Pmaxi

if PLRi < 0.05 ⇒ �i = 0.2716
if PLRi ≥ 0.05 ⇒ �i = 0.9033 PLR5

i − 2.9996 PLR4
i + 3.6503 PLR3

i
−2.0704 PLR2

i + 0.3747

(4)

The cost of PV and wind units can be evaluated similarly by Eq. (5).
The cost of generation of each kWh  is a function of three parameters
[21]: (I) investment cost; (II) operation and maintenance cost; (III)
fuel cost.

CPV,i = a + b × PPV,i

CWind,i = a + b × PWind,i

a = Capital cost($kW−1) ∗ Capacity(kW) ∗ Gr

Life time(Year)  ∗ 365 ∗ 24 ∗ LF
b = Fuel cost($kWh−1) + O&MCost($kWh−1)

(5)

Therefore the total cost is as follows:

f3(X) = Cost =
NFC∑
i=1

CFC,i +
NPV∑
i=1

CPV,i +
NWind∑

i=1

CWind,i + Csub (6)

Minimizing the total emission produced: The total emission of the
grid and the RESs is as follows:

f4(X) = Emission =
NFC∑
i=1

EFC,i +
NPV∑
i=1

EPV,i +
NWind∑

i=1

EWind,i + EGrid

EFC,i = NOxFC,i + SO2FC,i = (KFC,i
1 + KFC,i

2 )
lb MWh−1

× PFC,i

EPV,i = NOxPV,i + SO2PV,i = (KPV,i
1 + KPV,i

2 )
lb MWh−1

× PPV,i

EWind,i = NOxWind,i + SO2Wind,i = (KWind,i
1 + KWind,i

2 )
lb MWh−1

×PWind,i

EGrid = NOxGrid + SO2Grid = (KGrid
1 + KGrid

2 )
lb MWh−1

× Psub

(7)

The relevant values of these parameters are brought in Table 2.

2.2. Limits and constraints

(i) Limits associated with distribution lines:

PLine
ij,min < PLine

ij < PLine
ij,max (8)

(ii) Distribution power flow equations:

Pi =
Nbus∑
i=1

ViVjYij cos(�ij − ıi + ıj)

Qi =
Nbus∑
i=1

ViVjYij sin(�ij − ıi + ıj)

(9)

This equation is a load flow equation that plays the role of an equal-

ity constraint.

iii) Keeping the radial structure: since the distribution networks
are supposed to be radial, this quality of the network should be
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Table 2
Emission factors related to NOx , CO2 and SO2.

Emission factors (lb MWh−1)

Emission type Grid Gas turbine Micro turbine Wind PV FC Internal combustion (IC)

(

(

3

3

fi
n
t
g
k
o
s
h
p
p
r
r
m
t
a
d

3

t
S

F
t
l

NOx 5.06 0.03 0.44 

CO2 2031 1078 1596 

SO2 7.9 0.006 0.008 

preserved during the reconfiguration. Each loop in the network
is composed of a tie switch and a sectionalizing switch that
each time that one is open; the other one is closed, so that a
radial network would be achieved.

iv) Feeder current limitation [22]:

|If,i| ≤ Imax
f,i ; i = 1, 2, . . . , Nf (10)

(v) RESs constraints on active power production:

pmin,FC,i ≤ pFC,i ≤ pmax,FC,i; pmin,PV,i ≤ pPV,i ≤ pmax,PV,i;

pmin,Wind,i ≤ pWind,i ≤ pmax,Wind,i (11)

vi) Bus voltage constraints:

Vmin ≤ Vt
i ≤ Vmax (12)

. Modeling of the RESs

.1. Fuel cell

FC has been among of the most important developments in the
eld of power generation in recent years. Because of their clean-
ess, good efficiency and high reliability, they have become one of
he most attractive power supply sources in the field of distributed
eneration and electrical vehicles [23,24]. There are many different
inds of FCs according to their different characteristics. The solid
xide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs) are
upposed to be in the high-temperature category of the FCs. Their
igher efficiency and lower operation cost is considerable in com-
arison to the conventional power plants in the megawatt range of
roduction [24]. The typical efficiency of conventional power plants
anges from 38% to 40%, whereas the efficiency of an SOFC is in the
ange of 55–60% [25]. Another kind of FC is the proton exchange
embrane FC (PEMFC) which has the ability of operation at the air

emperature allowing rapid startup [23]. The PEMFC efficiency is
round 40–60% with the power and voltage ability to meet special
emands as a result of its modularity structure.

.2. Photovoltaic
Solar photovoltaics (PVs) are arrays of cells containing a material
hat converts solar radiation into direct current (DC) electricity [8].
olar photovoltaic (SPV) electric power generation is a promising

ig. 1. Models of RESs: (a) constant active and reactive load model with simultaneous t
hree-phase control, (c) constant active power and voltage magnitude load model with sim
oad  model with independent three-phase control.
0 0 1.15 4.7
0 0 1108 1432
0 0 0.008 0.454

clean technology with vast potential [26]. Orbiting satellites were
the first practical application of PVs. But today so much attention
is paid to use them as a source of power in the power generation
grids. As the PV cell temperature exceeds a threshold of 45 ◦C, the PV
performance decreases [8].  In this situation the PVs performance as
renewable energy power source should be investigated in different
condition carefully.

3.3. Wind

The performance of the wind turbines is based on the conversion
of the kinetic energy of wind into electricity. The instantaneous
power produced by a turbine is proportional to the third power
of the instantaneous wind speed [8].  Therefore as the wind speed
increases, the output power increases dramatically. As mentioned
before, regions like offshore, open flat areas and high altitude areas
that have more constant and stronger winds are suitable to be used
for the construction of wind farms.

3.4. Modeling of the renewable energy power plants

RESs can be modeled by two types: (I) constant voltage magni-
tude, constant active power loads; (II) constant active and reactive
power loads. When the renewable energy power source is supposed
to be constant active power and voltage magnitude load model, it
should be able to keep its voltage magnitude constant by the injec-
tion of reactive power. When the renewable energy power source
is considered as a constant active and reactive power load model, a
specific active and reactive power is produced and injected to the
network. However, in both cases it should be considered that active
and reactive power produced should not exceed the generation
capacity. As the result of the structure of the distribution networks,
the load distribution in these networks is unbalanced. So the RESs
operation and control is done in two  forms: (I) simultaneous three
phase; (II) independent three-phase control or single phase con-
trol. Therefore according to their model and type of control, four
models can be defined for these generators (Fig. 1) [7]:
(I) Constant active and reactive load model with simultaneous
three-phase control.

(II) Constant reactive power and voltage magnitude load model
with simultaneous three-phase control.

hree-phase control, (b) constant active and reactive load model with independent
ultaneous three-phase control and (d) constant active power and voltage magnitude
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Fig. 2. Block diagram of MHBMO  algorithm.
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Table 3
Comparison of active power losses objective functions evaluated by different methods neglecting RESs (Test system 1).

Method Power loss [kW] Minimum voltage Open switches

Goswami and Basu [29] 139.53 0.93781964 s7,s9,s14,s32,s37
Vanderson Gomes et al. [30] 139.53 0.93781964 s7,s9,s14,s32,s37
PSO-SFLA [31] 139.53 0.93781964 s7,s9,s14,s32,s37
MSFLA [32] 139.53 0.93781964 s7,s9,s14,s32,s37
Shirmohammadi and Hong [33] 140.26 0.93781964 s7,s10,s14,s32,s37
The  proposed algorithm 139.53 0.93781964 s7,s9,s14,s32,s37

Table 4
Comparison of voltage deviation objective functions evaluated by different methods neglecting RESs (Test system 1).

Method Voltage deviation [p.u] Minimum voltage Open switches

GA 0.06218097 0.93781902 s7,s10,s14,s32,s37

(

4

o
n
a
a

I
t

X

I
t
t
n
s
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C

PSO 0.06120031 

HBMO 0.06266643 

The  proposed algorithm 0.06120031 

(III) Constant active and reactive load model with independent
three-phase control.

IV) Constant reactive power and voltage magnitude load model
with independent three-phase control.

. Methodology

Multiobjective optimization problem (MOP) is the process of
ptimizing some different conflicting objective functions simulta-
eously when all the constraints and the limitations are observed
nd the best optimized solution for all the objective functions are
chieved. MOP  can be defined as [22]:

min F = [f1(X), f2(X), ..., fn(X)]T

s.t.
gi(X) < 0 i = 1, 2, . . . , Nueq

hi(X) = 0 i = 1, 2, . . . , Neq

(13)

n this essay X is the variable vector of making decision. Also n is
he number of objective functions.

 = [Tie, Sw, Pg] (14)

n fact the main difference between the single and the multiobjec-
ive optimization problem is the ability of the MOP  in observing

he best optimal solution of different objective functions simulta-
eously. This feature is due to capability of MOP  in selection of the
olutions as a set of Pareto points. In MOP  problem X* is called a
areto optimal solution if it is impossible to find a solution X in �

able 5
omparison of objective functions evaluated by different methods considering RESs for 2

Objective function Method Average Standard deviation 

Power losses [kW] GA 95.435466 3.774 

PSO  89.975333 1.916 

HBMO 92.548024 2.115 

The  proposed algorithm 85.583101 00.00 

Voltage deviation
[p.u]

GA 0.05487009 0.002391 

PSO  0.05083480 0.001547 

HBMO 0.05120344 0.0021054 

The  proposed algorithm 0.04898826 0.0000000 

Cost  [$] GA 155.16237 0.426 

PSO  154.43350 0.235 

HBMO 154.68270 0.275 

The  proposed algorithm 154.18182 0.000 

Emission [lb] GA 27,587.566 362.34 

PSO  27,376.903 347.63 

HBMO 27,440.376 351.38 

The  proposed algorithm 25,280.766 000.00 
0.93879681 s6,s9,s14,s32,s37
0.93733335 s9,s12,s19,s35,s37
0.93879681 s7,s9,s14,s32,s37

such that X dominates X∗ ∈ ˝.   ̋ is the set of all the vectors (X) that
observe the constraints and limitations.

In definition the solution X1 dominates X2 if the following two
conditions are satisfied:

(1)∀ j ∈
{

1, 2, . . . , n
}

, fj(X1) ≤ fj(X2)
(2)∃ k ∈

{
1, 2, . . . , n

}
, fk(X1) < fk(X2)

(15)

5. Fuzzy-based clustering

When the optimization is started, in each iteration, the best
values of the objective functions are evaluated. However, the big
difference which exists between the optimal value of some of the
objective functions and the optimal value of the other ones is a
barrier for making the improvement rate similar to each other. The
main point of using fuzzy set theory in this investigation is to bring
all the optimal values of the objective functions in the same base,
so that to create a good criterion for comparison. The membership
function designated to each objective function is as follows:

�fi
(X) =

⎧⎪⎨
⎪⎩

1 for fi(X) ≤ f min
i

0 for fi(X) ≥ f max
i

f max
i

− fi(X)

f max − f min
f min
i

≤ fi(X) ≤ f max
i

(16)
i i

As we  see the membership functions used here are continuous
functions with lower and upper limits which decrease monoton-
ically.

5 trails on Test system 1.

Worst solution Best solution Open switches of best solution CPU time [s]

104.12418 92.273284 s7,s10,s31,s34,s37 13.924
95.265620 89.089835 s6,s8,s32,s34,s37 12.785
98.333334 91.103298 s6,s8,s34,s36,s37 13.234
85.583101 85.583101 s7,s11,s31,s34,s37 10.031

0.06104787 0.05291578 s7,s9,s13,s32,s37 11.593
0.05444417 0.04920617 s11,s13,s35,s36,s37 10.319
0.05851443 0.05114542 s6,s13,s21,s32,s37 11.043
0.04898826 0.04898826 s11,s31,s33,s34,s37 9.303

155.85994 154.98564 s6,s9,s34,s36,s37 12.776
155.07246 154.33555 s7,s11,s14,s36,s37 11.350
155.35477 154.39087 s7,s11,s34,s36,s37 11.945
154.18182 154.18182 s7,s9,s14,s32,s37 10.500

28,046.59 27,298.962 s21,s28,s33,s32,s37 12.245
26,878.888 25,747.949 s12,s20,s35,s36,s37 10.694
27,523.738 26,357.004 s9,s33,s34,s36,s37 11.404
25,280.766 25,280.766 s7,s8,s32,s35,s37 9.484
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the mating process. As we  said in the last section, the process of
mating between a drone and a queen in the original HBMO is done
probabilistically by using Eq. (18). However, in the MHBMO  algo-
rithm, each queen value is composed of the all value of the objective

Table 6
Some of the non-dominated-solution found for MDFR problem (Test system 1).

Power losses (kW) Voltage deviation (p.u) Cost ($) Emission (lb)

1 085.583 0.053385 158.060 26,215.79
2  092.296 0.054754 157.705 29,083.56
3 089.471 0.058755 157.026 31,569.95
4  119.517 0.060206 155.648 36,982.22
5  108.316 0.055584 156.445 34,074.18
6  094.805 0.048988 158.429 25,335.31
7  141.097 0.066092 154.437 48,966.26
8 106.231 0.055065 156.207 35,622.73
9  097.291 0.049462 157.391 31,977.56

10  094.752 0.056561 157.840 27,501.51
11  121.030 0.062998 159.305 26,457.16
12  113.175 0.056907 155.816 35,854.27
13 098.836 0.057267 156.827 33,453.47
14  139.533 0.062180 154.181 49,954.62
15  100.242 0.055331 158.113 27,610.90
16  103.064 0.053654 156.429 34,186.32
Fig. 3. Single line diag

For each of the solutions in the repository, the normalized mem-
ership function can be evaluated as follows:

�(j) =
∑n

i=1ωi × �fl(Xj)∑m
j=1

∑n
i=1ωi × �fl(Xj)

(17)

here n is the number of the objective functions and m is the num-
er of the individuals in the repository. This equation makes a type
f decision making criteria which is adaptive and has the ability
f applying the decision maker’s options. For the controlling the
ize of the repository, all the weighting factors (wi) are set unit.
herefore N� for all the non-dominated solutions is evaluated and
he best solutions are kept in the repository. In this paper we  get
dvantage of fuzzy clustering in another application too. In the
imulation results, it is explained that by changing the weighting
actors to a different value than 1, the preferences of the operator
n determining the importance of the objective functions can be
chieved.

. Honey bee mating optimization (HBMO) modeling

.1. Original HBMO

In the natural world, these types of flying insects (honey bees)
ive with each other as a colony. That is their life has a direct rela-
ion with their social colony. The communication of these insects
tructurally is composed of three main groups: the queen (female),
he drones (male) and the workers. The process of mating between

 drone and a queen is done probabilistically by using an annealing
unction as follows [27]:

rob(D) = exp
(

− �f

S(t)

)
(18)

f the mating process is done successfully, the drone sperm is stored
n the queen spermatheca. After each mating, the queen speed
ecreases as follows:
(t + 1) =  ̨ × S(t) (19)

his mating process continues until the time that the queen’s sper-
atheca becomes full or her speed deceases to a specific value. After
f 32 bus test system.

generating the new broods, they should be protected and improved
by the workers (for a complete description see [27,28]). As a matter
of fact, the new generation is consisted of all the new solutions that
should be used in the optimization process. However, if one of these
broods has a better situation than the queen’s, then it replaces the
queen and another new generation is created by the use of the new
queen. This process is continued until the time that the best queen
is achieved.

6.2. Modified HBMO (MHBMO) algorithm

As we  mentioned earlier, original HBMO suffers from the proba-
bility of being trapped in local optima. This shortcoming roots from
17  090.596 0.054528 158.260 25,280.76
18 108.522 0.060597 156.552 32,554.66
19  124.000 0.057638 155.324 38,607.39
20  112.660 0.056966 155.640 38,336.96
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unctions which are considered in the problem. Therefore the in the
roposed method, Eq. (18) is developed as follows:

prob(D) = exp

(
− �f

S(t)

)
�f  =

√
(f queen

1 − f drone
1 )

2 + (f queen
2 − f drone

2 )
2 + (f queen

3 − f drone
3 )

2 + . . .

(20)

n the original HBMO each brood is produced by the following equa-
ion:

Xqueen = [xq,1, xq,2, . . . , xq,N]
Spi = [si,1, si,2, . . . si,N], i = 1, 2, . . . , NSp

Xbrood,j = Xqueen + � × (Xqueen − Spi)
(21)

s we can see, in the original HBMO, one queen will mate with the
rones’ population to generate the new broods. But in the proposed
HBMO  algorithm, in order to enhance the diversity of the new

eneration of the honey bees (broods), after generation of the queen
permatheca in a similar method to the original HBMO, the breed-
ng process is corrected as the following. Note it that this process
hould be repeated for all the drones (Xi).

Firstly, three new individual should be generated as the new
ueens for implementing breeding process. The first individual
Xq1) is selected from the repository randomly. For the generation
f the second individual, the mean value of the repository is calcu-
ated column-wise, which gives the mean value of each particular
ndividual as:

i = [m1, m2, m3, . . . , mn] (22)

ote it that Mi which is generated here is selected as the new sec-
nd queen (Xq2). The third modified queen (Xq3) is generated by
he use of fuzzy membership function. That is the individual in the
epository which the summation of its membership function val-
es is the most (so the best solution) is the selected as the third
odified queen.
After selection of the new three queens, two individual should be

enerated as the new drones for implementing breeding process.
he first new drone is the mean value of the queen spermatheca
hich is calculated column-wise. The second new drone is selected

rom the population of the drones randomly. The idea which is used
ere for the modification process is to move Xi toward the corre-
ponding state vector of the queen. In fact since the queen position
s the best, so by moving the position of each individual toward
he queen’s position, the position of the specified individual will be
mproved. Now, by the use Xq1, Xq2, Xq3, XD1 and XD2, six �Xi(�Xq,i,

XD,i) are produced as the follows:

Xqk,Dm = rk(Xq,k − TF XD,m); k = 1, 2, 3, m = 1, 2 (23)

ere TF is a constant factor which decides the value of mean to be
hanged. TF can takes two values of 1 and 2 which is determined
euristically as: TF = round[1 + rand(0,1)]. For improving the diver-
ity of the search space a drone Xj is selected from the population
f the drones such that Xj /= Xi. Then by the use of the following
quation �Xj is determined as:

if f (Xj) ≥ f (Xi)
�Xj = rand(.) × (Xj − Xi)

else
�Xj = rand(.) × (Xi − Xj)

end

(24)

here rand(.) is a random function generator. The new six modified
ndividuals are generated as follows:

Yk,m = Xold
i

+ �Xqk,Dm; k = 1, 2, 3, m = 1, 2
old (25)
Z = X
i

+ �Xj

ow by the use of Eq. (15), the non-dominated solutions among Y1,1,
1,2, Y2,1, Y2,2, Y3,1, Y3,1 and Z are evaluated and stored in the repos-
tory. If there is only one non-dominated solution among them,
ources 196 (2011) 8881– 8896

then this individual is selected as the modified brood. Neverthe-
less if there is more than one non-dominated solution among the
individuals, then the individual which the summation of its mem-
bership function is the most (so the most satisfying) is selected as
the new modified brood. For every individual in the population of
drones, this process should be repeated. After that the breeding pro-
cess for all the drones is completed then the repository is updated
by Eq. (15).

Another significant difference between the MHBMO  algorithm
and the original HBMO algorithm is in the generation of the new
drones’ population. In the original HBMO, after choosing the new
queen from the broods’ population then the old drone generation
is discarded. In the MHBMO  algorithm, each individual of the new
drones’ population is generated during the breeding process. As
mentioned before, for each drone, seven new modified broods are
generated. After each breeding process, the non-dominated solu-
tion which the summation of its membership function values is
the most (and therefore the best brood) is compared with that of
the corresponding drone (Xi). If the summation of the best brood
membership function is better than that of Xi, then replace it, else
Xi will be kept in its position. So after a complete breeding process,
the new drones’ population is updated. The MHBMO  algorithm is
depicted in Fig. 2.

6.3. Solution procedure of MDFR considering RESs

Step 1: Defining the input data.
Step 2: Converting the constrained MOP  to an unconstrained one:

here the constrained MOP  should be changed to an uncon-
strained one by constructing an augmented objective
function as Eq. (26). Since all constrains must be met, so
penalty factors L1 and L2 are used to prevent violating the
constraints.

F(X) =

⎡
⎢⎣

F1(X)
F2(X)
F3(X)
F4(X)

⎤
⎥⎦

4×1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1(X) + L1

Neq∑
i=1

(Ji(X))2 + L2

(
Nueq∑
i=1

(Max[0,  −gi(X)])2

)

f2(X) + L1

Neq∑
i=1

(Ji(X))2 + L2

(
Nueq∑
i=1

(Max[0,  −gi(X)])2

)

f3(X) + L1

Neq∑
i=1

(Ji(X))2 + L2

(
Nueq∑
i=1

(Max[0,  −gi(X)])2

)

f4(X) + L1

Neq∑
i=1

(Ji(X))2 + L2

(
Nueq∑
i=1

(Max[0,  −gi(X)])2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4×1

(26)

L1 and L2 as the penalty factors are supposed to be 105 in the paper.

Step 3: Initial population generation. The initial population is as
follows:

initial population =

⎡
⎢⎣

X1
X2
...

⎤
⎥⎦ (27)
XNipop Nipop×(Ntie+Nsw+Ng )

Xi = [xi] = [Tiei, Swi, Pg,i]
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Fig. 4. 3D plot of the Pareto-optimal solutions found for case study 1 cons

ie = [Tie1, Tie2, Tie3, . . . , TieNTie
],

Sw = [Sw1, Sw2, Sw3, . . . , SwNSw ]
g = [PFC, PPV, PWind], PFC = [PFC,1, PFC,2, . . . , PFC,NFC ]

PV = [PPV,1, PPV,2, . . . , PPV,NPV ], PWind = [PWind,1, PWind,2, . . . ,

Fig. 5. 3D plot of the Pareto-optimal solutions found for case study 1 considering t
g total active power losses, voltage deviation and cost objective functions.

PWind,NFC
], i = 1, 2, 3, . . . , N; Ng = NPV + NFC + NWind
Step 4: Objective function evaluation. After generating the initial
population, load flow is carried on, and all the membership
functions related to the objective functions are evaluated
by Eq. (16).

otal active power losses, voltage deviation and emission objective functions.
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Fig. 6. 3D plot of the Pareto-optimal solutions found for case study 1 c

Here �ploss,i(X), �dvoltage,i(X), �price,i(X) and �Emission,i(X) are
embership functions of the total power losses, the voltage devi-

tion, the total cost and the total emission for the ith individual in
he population.

Step 5: Repository complement. Here by the use of membership
functions evaluated in the last step and by the use of Eq.

(15), all the non-dominated solutions are found and stored
in the repository.

Step 6: Queen selection. A queen is selected from the non-
dominated solutions stored in the repository randomly.

Fig. 7. 3D plot of the Pareto-optimal solutions found for case study 1 con
ering total active power losses, cost and emission objective functions.

Step 7: Generation of the queen spermatheca matrix. At the start
of mating, the queen flies by her maximum speed. Then
a drone is chosen from the population randomly. Then
a random number between zero and one is generated.
If this random number is less than the mating probabil-
ity evaluated by Eq. (20), then the drone sperm is added
to the queen spermatheca, else another drone is chosen
randomly and the process is repeated.
Step 8: Breeding process and updating drones’ population: the
breeding process should be implemented as it was
described in Section 6.2 by the use of Eqs. (22)–(25). After
the termination of the breeding process, the repository

sidering emission, voltage deviation and cost objective functions.
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Table  7
Objective function values in all cases (Test system 1).

Cases Importance f1 f2 f3 f4

w1 w2 w3 w4

Case I – – – – 85.583 0.053385 158.060 26,215.79
Case  II – – – – 94.805 0.048988 158.429 25,335.31
Case  III – – – – 139.533 0.062180 154.181 49,954.62
Case  IV – – – – 90.596 0.054528 158.260 25,280.76

Case  V 0.33 0.33 0.33 0 101.460 0.052126 156.191 –
0.25  0.25 0.5 0 110.788 0.054349 155.402 –
0.25  0.5 0.25 0 92.863 0.051337 156.992 –
0.5  0.25 0.25 0 92.863 0.051337 156.992 –

Case  VI 0.33 0 0.33 0.33 85.583 – 158.060 26,215.79
0.25  0 0.25 0.5 85.583 – 158.060 26,215.79
0.25  0 0.5 0.25 104.620 – 156.356 32,808.73
0.5  0 0.25 0.25 85.583 – 158.060 26,215.79

Case  VII 0 0.33 0.33 0.33 – 0.050984 157.698 27,776.86
0  0.25 0.25 0.5 – 0.050984 157.698 27,776.86
0  0.25 0.5 0.25 – 0.055561 155.870 35,197.85
0  0.5 0.25 0.25 – 0.050984 157.698 27,776.86

Case  VIII 0.33 0.33 0 0.33 94.805 0.048988 – 25,335.31
0.25  0.25 0 0.5 94.805 0.048988 – 25,335.31
0.25  0.5 0 0.25 94.805 0.048988 – 25,335.31
0.5  0.25 0 0.25 85.583 0.053385 – 26,215.79

Case  IX 0.25 0.25 0.25 0.25 94.805 0.0489880 158.429 25,335.31
0.2  0.2 0.2 0.4 94.805 0.0489880 158.429 25,335.31
0.2  0.2 0.4 0.2 96.610 0.051103 156.957 30,392.10

0.2 

0.2 

S

S

S

S

7

b

T
S

0.2  0.4 0.2 

0.4  0.2 0.2 

should be updated. During each breeding for Xi (the ith
drone), the position of Xi is updated as described in Section
6.2.

Step 9: If all the drones are checked go to the next step, else go to
step 8.

tep 10: Updating the repository. In this step the repository is
checked so that all the solutions stored in the repository
will be non-dominated solutions.

tep 11: Updating the queen. A new queen is chosen from the
updated repository randomly.

tep 12: Generating the queen speed. The queen speed is generated
as:

(28)Squeen = rand(.) × (Smax − Smin) + Smin

tep 13: Termination criterion. If the number of iterations reaches
to maximum number of the iteration, finish the algorithm,
else go to step 6.
. Simulation results

In this section the proposed method is examined on two  distri-
ution networks as case studies.

able 8
pecifications of RESs (Test system 2).

Capacity (kW) Type Location

RES 1 500 FC 6
RES  2 500 FC 53
RES  3 500 Wind energy 13
RES  4 500 Wind energy 60
RES  5 500 Wind energy 18
RES  6 500 PV 71
RES  7 500 PV 2
94.805 0.048988 158.429 25,335.31
85.583 0.053385 158.060 26,215.79

7.1. Case study 1

The first test system is a 12.66 kV system which consists of 32
buses, 5 sectionalizing switches and 5 tie switches [15]. The ini-
tial power loss before the reconfiguration is 202.67 kW.  Table 1
shows the location, capacity, and type of RESs. Also, the emission
factors related to NOx, CO2 and SO2 are shown in Table 2. The single
diagram of the network is illustrated in Fig. 3.

Since MHBMO  algorithm is used in this paper for the first time
to solve DFR problem, then first of all, a single objective opti-
mization of the first two  objective functions (total active power
losses and voltage deviation) is evaluated to compare the perfor-
mance of the MHBMO  algorithm with the other methods in the
area. The results of comparison between the performance of the
proposed method and some famous evolutionary algorithms like
particle swarm optimization (PSO) algorithm, genetic algorithm
(GA), honey bee mating optimization (HBMO), etc., are shown in the
following. The superiority of the proposed method over the other
evolutionary algorithms can be deduced easily from Tables 3 and 4.
In these tables, the single objective DFR is evaluated while the RESs
are neglected. It is obvious that the total power losses and the
voltage deviation objective functions which are evaluated by the
proposed method are more satisfying than the results of the other
algorithms and the good ability of the algorithm can be inferred. In
Table 5, the effect of RESs on the DFR problem is investigated. It is
evident that the amount of pollution generated by the total system
will be decreased in the presence of the RESs. On the other hand,
the use of these sources of energy in the system has resulted to a
considerable improvement of the other three objective functions’
values. In order to have a more precise comparison, the average
value, standard deviation and the worst solution evaluated by the
different algorithms is shown in Table 5. The bold number in each

column shows the optimal minimum value in that column. Com-
paring the results of Table 5 with those of Tables 3 and 4, it could
be conducted that the performance of the system after using the
RESs has improved impressively. Table 6 shows the set of non-
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Table 10
Some of the non-dominated-solution found for MDFR problem (Test system 2).

Power losses (kW) Voltage deviation (pu) Cost ($) Emission (lb)

1 394.845 0.0518573 1,155.617 354,055.00
2 411.635 0.0511236 1,159.601 339,811.14
3 418.340 0.0507539 1,159.301 342,031.88
4  434.698 0.0518089 1,156.824 352,753.40
5  470.137 0.0452303 1,157.585 354,907.74
6  421.103 0.0575129 1,160.041 338,810.85
7  443.167 0.0574801 1,161.901 336,764.20
8 423.218 0.0493687 1,159.298 343,783.64
9 432.495 0.0575949 1,161.843 336,927.69

10 434.013 0.0518284 1,157.458 350,705.02
11  484.735 0.0613938 1,153.954 370,825.78
12  423.502 0.0499521 1,158.755 345,848.50
13  463.612 0.0597616 1,155.460 361,918.89
14 428.347 0.0486935 1,157.582 349,087.17
15  425.001 0.0581013 1,159.491 341,750.19
16 535.687 0.0597561 1,167.844 331,303.69
17  421.624 0.0505263 1,158.129 345,749.57
18 442.959 0.0487904 1,161.286 338,745.86

19  448.565 0.0501727 1,155.881 360,702.48
20 428.347 0.0486935 1,157.582 349,087.17

dominated solutions found for MDFR problem considering RESs.
Each of these solutions can be the best one, depending on the pre-
specified priorities by decision maker. For example, if the main goal
is to minimize the power losses, so, the operator should select the
best solution from the first column of Table 6. It should be noted in
this table, the behavior of each objective function is related to the
behaviors of the other objective functions. In order to see this rela-
tionship more clearly, along with Figs. 4–7,  in Table 7, the results
of different combinations of the objective functions are considered
as follows:

Case I: Considering function f1 (neglecting f2, f3 and f4)
Case II: Considering function f2 (neglecting f1, f3 and f4)
Case III:  Considering function f3 (neglecting f1, f2 and f4)
Case IV:  Considering function f4 (neglecting f1, f2 and f3)
Case V: Considering functions f1, f2 and f3 (neglecting f4)
Case VI:  Considering functions f1, f3 and f4 (neglecting f2)
Case VII:  Considering functions f2, f3 and f4 (neglecting f1)
Case VIII: Considering functions f1, f2 and f4 (neglecting f3)
Case IX:  Considering functions f1, f2, f3 and f4

As mentioned in Section 5, a fuzzy clustering technique is used to
control the size of the repository. Also, in this paper a fuzzy decision
making procedure is adopted to obtain “most-preferred” solution.
In order to aim this goal, the importance of each objective function,
i.e. wi, should be specified, such that

∑4
i=1wi = 1.

To have better comparison between the single objective and
multiobjective optimization, the results of the single objective
optimization cases (cases I–IV) as well as the multiobjective opti-
mization cases (cases V–IX) are shown in Table 7. In the cases V–IX,
the total emission, the voltage deviation, the total power losses and
the total cost objective functions are neglected, respectively. In the
first part of Table 7 (cases I–IV), the value of each objective func-
tion after applying single optimization is shown. The results show
that in some cases the improvement of an objective function will
affect the other objective functions in the same manner while it
may negatively influence another objective function. Some of the
most important results which can be inferred from this table are as
follows:
- From Table 7, we  can find that in a large range of variation,
the behavior of f2 (voltage deviation) and f4 (emission) are the
same; that is when f2 is minimized individually, f4 is also min-
imized and when it increases the other one will increase, too.
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ram o
Fig. 8. Single line diag

The evidence of this claim is the results of the cases VII, VIII, IX.
In case VII, in the 2nd and 4th row, when the weighting factor
of f2 and f4 is increased (so increasing their importance in the

optimization when neglecting f1) the value of these two  objec-
tive functions is the same (f2 = 0.050984 p.u; f4 = 27,776.86 lb).
This happens similarly in case VIII, in the 2nd and 3rd row

Fig. 9. 3D plot of the Pareto-optimal solutions found for case study 2 considerin
f 85 bus test system.

(f2 = 0.048988 p.u; f4 = 25,335.31 lb), and in case IX, in the 2nd and
4th row (f2 = 0.0489880 p.u; f4 = 25,335.31 lb).

- From this table, it can be deduced that f3 (total cost) has a con-

flicting behavior to the other three objective functions especially
f2 and f4. In case VI (neglecting voltage deviation objective func-
tion), increasing the importance of f3 (by increasing w3), has a

g total active power losses, voltage deviation and cost objective functions.
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Fig. 10. 3D plot of the Pareto-optimal solutions found for case study 2 consid

negative effect on the other two objective functions (f1 and f4).
Similarly in case VII, the increasing importance of f2 and f4 (w2 and
w4) has resulted in the same solution, while the same increase in
the importance of f3 has resulted in a different solution which
shows a conflicting behavior with respect to the other two objec-
tive functions. The same observation can be inferred from case
IX.

 The dependency of f1 (total power losses) versus the other func-
tions is to some extent weak. From case V it can be figured out

that f1 has a similar behavior with f2 while the confliction with
f3 (as mentioned before) is evident. In case VI, it shows the same
behavior with f4. But in case VIII, a different conflicting behavior
on both f2 and f4 can be seen. Similarly in case IX, f1 is in contrast

Fig. 11. 3D plot of the Pareto-optimal solutions found for case study 2 consid
total active power losses, voltage deviation and emission objective functions.

with the other objective functions. Therefore, it can be deduced
that f1 behavior in progress is not in direct relationship with f2
and f4.

- In case IX, 3rd row, the main importance among the four objective
functions is applied to the cost function (f3). Nevertheless, the
value of this objective function (cost) is more than that of case III.
In fact this difference in the cost values of the two cases indicates
the extra value which must be paid as the cost of decreasing the
total active power losses as well as enhancing the security level

(voltage deviation) and reducing the total emission.

- As before-mentioned, each Pareto solution of the repository is
indicative of an alternative option for the system operator as
a decision maker. Indeed, after applying all the limitations and

ering total active power losses, emission and cost objective functions.
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Fig. 12. 3D plot of the Pareto-optimal solutions found for case stud

conditions which is determined by the operator as the require-
ments of the system, it is needed to extract the best compromised
solution according to the preferences among the stored solu-
tions of the repository. It can be seen in case IX of Table 7 that
with the same preferences of the objective functions, the best
compromised solution is 94.805 kW,  0.0489880 p.u, 158.429$ and
25,335.31 lb for f1, f2, f3 and f4, respectively.

Neglecting f4, f2, f1 and f3 in the multiobjective optimization, the
est compromised solution can be achieved from the first row of
he cases V to VIII, respectively.

To show the improvement of each objective function with
espect to the other objective functions, the three-dimensional
3D) plot of the non-dominated solutions of the multiobjective DFR
roblem are shown in Figs. 4–7.  Each star denotes a Pareto-optimal
olution in these figures. The dependency of each objective func-
ion improvement to the other objective functions can be seen in
hese figures, too.

.2. Case study 2

The second case study is a standard 11.4 kV radial distribution
ystem which is consisted of 2 substations, 11 feeders and 85 buses
nd 96 switches [34]. The initial active power loss and maximum
oltage deviation neglecting RESs are 531.99 kW and 0.052 p.u,
espectively. In Table 8, the location, capacity and the type of each
ES are shown. The single diagram of the second test system is
epicted in Fig. 8.

To understand the behavior of each objective function with
espect to the others, in Table 7 the results of a complete inves-
igation is shown and explained. So, in order to avoid unnecessary

omparisons in case study 2, the performance of the proposed algo-
ithm is assessed in the presence of RESs.

In Table 9, the complete comparison between the values of all
bjective functions is implemented. All the objective functions have
nsidering emission, voltage deviation and cost objective functions.

improved effectively and the satisfying performance of the pro-
posed method is evident. Also, by comparing the values of the
standard deviation, mean value, time of the run and the worst
solution found by each algorithm, the superiority of the proposed
algorithm is verified.

Some of the non-dominated solutions found in multiobjective
DFR problem considering the RESs are shown in Table 10.  In order to
see the behavior of each objective function according to the others,
in Figs. 9–12 the three-dimensional (3D) plot of the non-dominated
solutions are shown. Each star denotes a Pareto-optimal solution.
The stars which are shown by rectangular box in the figure are
optimal solutions which are found during single optimization of
each of the objective functions.

8. Conclusion

In this paper an appropriate modified algorithm based on HBMO
(MHBMO) algorithm is introduced to solve the multiobjective DFR
problem considering RESs. The objective functions consist of the
total active power losses, the voltage deviation of each bus from
its nominal value, the total cost of the system (including the grid
and the RESs) and the total emission produced by the system.
In the proposed method, a set of non-dominated solutions called
Pareto-optimal solutions are found and stored in the repository
which its size is controlled by the use of fuzzy clustering method.
Also a fuzzy-based decision maker was introduced to select the
‘best’ compromised solution according to his/her experiences and
preferences. To improve the original HBMO algorithm, the mating
process is enhanced so that to improve the exploration ability of
the algorithm in the entire search space. In order to see the fea-
sibility and ability of the proposed method, MHBMO algorithm is

applied to two  test systems and the results are compared by some
of the most famous optimization algorithms. The results show the
good performance and credibility of the proposed method in the
MDFR problem. Also it was shown that the behaviors of the voltage
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eviation and total emission objective functions are similar to each
ther while the cost objective function has a conflicting behavior
egarding the other objective functions. Also, the superiority of the
roposed method is shown with respect to the other optimization
ethods in the area.
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